Filters
Question type

Find the derivative of the function. - y=x24(2x1) 2y=\frac{x^{2}-4}{(2 x-1) ^{2}}


A) y=2x4(4x1) 3y^{\prime}=-\frac{2 x-4}{(4 x-1) ^{3}}
B) y=2x+16(2x1) 3y^{\prime}=-\frac{2 x+16}{(2 x-1) ^{3}}
C) y=2x(2x1) 3y^{\prime}=-\frac{2 x}{(2 x-1) ^{3}}
D) y=2x2+16(2x1) 3y^{\prime}=\frac{2 x^{2}+16}{(2 x-1) ^{3}}

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

Find functions gg and hh such that f(x) =g(h(x) ) f(x) =g(h(x) ) . - f(x) =e6x+8f(x) =e^{6 x+8}


A) g(x) =lnx,h(x) =6x+8g(x) =\ln x, h(x) =6 x+8
B) g(x) =e6x,h(x) =x+8g(x) =e^{6 x}, h(x) =x+8
C) g(x) =ex,h(x) =6x+8g(x) =e^{x}, h(x) =6 x+8
D) g(x) =6x+8,h(x) =exg(x) =6 x+8, h(x) =e^{x}

E) B) and D)
F) All of the above

Correct Answer

verifed

verified

Solve the problem. -The total revenue from the sale of xx stereos is given by R(x) =1000(1x300) 2R(x) =1000\left(1-\frac{x}{300}\right) ^{2} . Find the average revenue from the sale of xx stereos.


A) R(x) =1000x(1x300) 2R(x) =\frac{1000}{x}\left(1-\frac{x}{300}\right) ^{2}
B) R(x) =500x(1x300) 2R(x) =500 x\left(1-\frac{x}{300}\right) ^{2}
C) R(x) =1000x(1x300) 2R(x) =1000 x\left(1-\frac{x}{300}\right) ^{2}
D) R(x) =500x(1x300) 2R(x) =\frac{500}{x}\left(1-\frac{x}{300}\right) ^{2}

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

Use the properties of limits to evaluate the limit if it exists. - limx12x74x+5\lim _{x \rightarrow 1} \frac{2 x-7}{4 x+5}


A) 12-\frac{1}{2}
B) 75-\frac{7}{5}
C) 59-\frac{5}{9}
D) Does not exist

E) A) and C)
F) C) and D)

Correct Answer

verifed

verified

Find the derivative. - y=4ex2y=4 e^{x^{2}}


A) 8xe4x28 x e^{4 x^{2}}
B) 8xe2x8 x e^{2 x}
C) 8xe8 x \mathrm{e}
D) 8xex28 x e^{x^{2}}

E) B) and D)
F) B) and C)

Correct Answer

verifed

verified

Find f[g(x) ]f[g(x) ] and g[f(x) ]g[f(x) ] . - f(x) =7/(x) 4;g(x) =2x3f(x) =7 /(x) ^{4} ; g(x) =2 x^{3}


A) f[g(x) ]=7/16x12\mathrm{f}[\mathrm{g}(\mathrm{x}) ]=7 / 16 \mathrm{x} 12
g[f(x) ]=686/(x) 12g[f(x) ]=686 /(x) ^{12}
B) f[g(x) ]=7x12/16f[g(x) ]=7 x^{12} / 16
g[f(x) ]=x12/686\mathrm{g}[\mathrm{f}(\mathrm{x}) ]=\mathrm{x}^{12 / 686}
C) f[g(x) ]=7x12/686f[g(x) ]=7 x^{12} / 686
g[f(x) ]=x12/16\mathrm{g}[\mathrm{f}(\mathrm{x}) ]=\mathrm{x}^{12 / 16}
D) f[g(x) ]=686/7x12f[g(x) ]=686 / 7 x^{12}
g[f(x) ]=16/(x) 12\mathrm{g}[\mathrm{f}(\mathrm{x}) ]=16 /(\mathrm{x}) ^{12}

E) B) and D)
F) B) and C)

Correct Answer

verifed

verified

Solve the problem.} -A car rental firm charged $30\$ 30 per day or portion of a day to rent a car for a period of 1 to 4 days. Days 5 to 8 were then "free," while the charge for days 9 through 15 was again $30\$ 30 per day. Let C(t) C(t) represent the total cost to rent the car for tt days, where 15 . Find the total cost of a rental for 3 days.


A) $30\$ 30
B) $90\$ 90
C) $120\$ 120
D) $33\$ 33

E) B) and C)
F) None of the above

Correct Answer

verifed

verified

Find f(x) f^{\prime}(x) for the function, then find f(x) f^{\prime}(x) for the given xx . - f(x) =8x+2,f(0) f(x) =\frac{8}{x+2}, f^{\prime}(0)


A) f(x) =8(x+2) 2;f(0) =2f^{\prime}(x) =-\frac{8}{(x+2) ^{2}} ; f^{\prime}(0) =-2
B) f(x) =4(x+2) 2;f(0) =1f^{\prime}(x) =\frac{4}{(x+2) ^{2}} ; f^{\prime}(0) =1
C) f(x) =4(x+2) 2;f(0) =1f^{\prime}(x) =-\frac{4}{(x+2) ^{2}} ; f^{\prime}(0) =-1
D) f(x) =8(x+2) 2;f(0) =2f^{\prime}(x) =\frac{8}{(x+2) ^{2}} ; f^{\prime}(0) =2

E) A) and C)
F) A) and B)

Correct Answer

verifed

verified

Use the limit properties to find the following limit. -If limx1f(x) =10\lim _{x \rightarrow 1} f(x) =10 and limx1g(x) =3\lim _{x \rightarrow 1} g(x) =3 , find limx1f(x) g(x) \lim _{x \rightarrow 1} \frac{f(x) }{g(x) } .


A) -1
B) 103\frac{10}{3}
C) 103-\frac{10}{3}
D) Does not exist

E) A) and B)
F) None of the above

Correct Answer

verifed

verified

Find the equation of the tangent line to the curve when x\mathbf{x} has the given value. - f(x) =4x;x=5\mathrm{f}(\mathrm{x}) =\frac{4}{\mathrm{x}} ; \mathrm{x}=5


A) y=13x16y=13 x-16
B) y=39x80y=-39 x-80
C) y=4x25+85y=-\frac{4 x}{25}+\frac{8}{5}
D) y=x20+15y=\frac{x}{20}+\frac{1}{5}

E) A) and D)
F) B) and C)

Correct Answer

verifed

verified

Find all points where the function is discontinuous. - Find all points where the function is discontinuous. -  A)   x=2  B)   x=4  C)   x=4, x=2  D)  None


A) x=2x=2
B) x=4x=4
C) x=4,x=2x=4, x=2
D) None

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

Solve the problem. -The cost of manufacturing a particular videotape (in dollars) is c(x) =9000+8xc(x) =9000+8 x , where xx is the number of tapes produced. The average cost per tape (in dollars) , denoted by cˉ(x) \bar{c}(x) , is found by dividing c(x) \mathrm{c}(\mathrm{x}) by x\mathrm{x} . Find limx1000c(x) \lim _{\mathrm{x} \rightarrow 1000} \overline{\mathrm{c}}(\mathrm{x}) .


A) $24\$ 24
B) $17\$ 17
C) $10\$ 10
D) does not exist

E) All of the above
F) A) and B)

Correct Answer

verifed

verified

Find the point from those given that has the given property. -The point where the slope of the tangent is least  Find the point from those given that has the given property. -The point where the slope of the tangent is least    A)   (0,0)   B)   (-1,-1)   C)   (1,3)


A) (0,0) (0,0)
B) (1,1) (-1,-1)
C) (1,3) (1,3)

D) A) and B)
E) A) and C)

Correct Answer

verifed

verified

Find f[g(x) ]f[g(x) ] and g[f(x) ]g[f(x) ] . - f(x) =x+5;g(x) =4x1f(x) =\sqrt{x+5} ; g(x) =4 x-1


A) f[g(x) ]=4x2+1f[g(x) ]=\sqrt{4 x^{2}+1}
g[f(x) ]=4x25g[f(x) ]=\sqrt{4 x^{2}-5}
B) f[g(x) ]=2x+1f[g(x) ]=2 \sqrt{x+1}
g[f(x) ]=4x+51g[f(x) ]=4 \sqrt{x+5}-1
C) f[g(x) ]=2x+5f[g(x) ]=2 \sqrt{x+5}
g[f(x) ]=4x+11g[f(x) ]=4 \sqrt{x+1}-1
D) f[g(x) ]=4x25f[g(x) ]=\sqrt{4 x^{2}-5}
g[f(x) ]=4x25g[f(x) ]=\sqrt{4 x^{2}-5}

E) None of the above
F) All of the above

Correct Answer

verifed

verified

Provide the proper response. -A particle has a position function s(t) s(t) . Is the derivative of s(t) s(t) with respect to time at a given time t1t_{1} , the average or instantaneous velocity?


A) A verage Velocity
B) Neither
C) I nstantaneous velocity
D) Both

E) All of the above
F) A) and B)

Correct Answer

verifed

verified

The graph shows the total sales in thousand of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.  The graph shows the total sales in thousand of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.    -10 to 30 A)  3 B)   \frac{2}{3}  C)   \frac{1}{3}  D)  1 -10 to 30


A) 3
B) 23\frac{2}{3}
C) 13\frac{1}{3}
D) 1

E) A) and B)
F) C) and D)

Correct Answer

verifed

verified

Let f(x) =8x25xf(x) =8 x^{2}-5 x and g(x) =7x+9g(x) =7 x+9 . Find the composite. - f[g(k) ]\mathrm{f}[\mathrm{g}(\mathrm{k}) ]


A) 392k2+973k+603392 k^{2}+973 k+603
B) 392k2973k+603392 k^{2}-973 k+603
C) 56k2+35k+956 k^{2}+35 k+9
D) 56k235k+956 k^{2}-35 k+9

E) A) and D)
F) A) and C)

Correct Answer

verifed

verified

Find the equation of the tangent line to the curve when x\mathbf{x} has the given value. - f(x) =x5;x=4f(x) =\frac{\sqrt{x}}{5} ; x=4


A) y=4x25+85y=-\frac{4 x}{25}+\frac{8}{5}
B) y=39x80y=-39 x-80
C) y=13x16y=13 x-16
D) y=x20+15y=\frac{x}{20}+\frac{1}{5}

E) A) and D)
F) None of the above

Correct Answer

verifed

verified

Find the following. - f(4) f^{\prime}(4) if f(x) =9x5/27x3/2f(x) =9 x^{5 / 2}-7 x^{3 / 2}


A) 96
B) 6
C) 8
D) 159

E) All of the above
F) None of the above

Correct Answer

verifed

verified

Find the derivative. - f(x) =lnxexf(x) =\frac{\ln x}{e^{x}}


A) 1xlnxex\frac{1-x \ln x}{e^{x}}
B) 1xex\frac{1}{x e^{x}}
C) lnxxex\frac{\ln x}{x e^{x}}
D) 1xlnxxex\frac{1-x \ln x}{x e^{x}}

E) A) and C)
F) A) and B)

Correct Answer

verifed

verified

Showing 301 - 320 of 342

Related Exams

Show Answer