Filters
Question type

Use spherical coordinates. Evaluate B(x2+y2+z2) 2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 4 .


A) 655367π\frac { 65536 } { 7 } \pi
B) 43747\frac { 4374 } { 7 }
C) 43747π\frac { 4374 } { 7 } \pi
D) 5598727π\frac { 559872 } { 7 } \pi
E) None of these

F) B) and E)
G) A) and B)

Correct Answer

verifed

verified

Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina. Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina.

Correct Answer

verifed

verified

Calculate the double integral. R(9x2y315x4) dA,R={(x,y) 0x1,0y4}\iint _ { R } \left( 9 x ^ { 2 } y ^ { 3 } - 15 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}


A) 250
B) 230
C) 190
D) 180
E) 210

F) A) and E)
G) All of the above

Correct Answer

verifed

verified

Evaluate the double integral by first identifying it as the volume of a solid. R(152x) dA,R={(x,y) 2x5,3y8}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 2 \leq x \leq 5,3 \leq y \leq 8 \}


A) 300
B) -100
C) 0
D) 200
E) 100

F) D) and E)
G) A) and B)

Correct Answer

verifed

verified

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where RR is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas xy=2,xy=4;x=uv,y=vx y = 2 , x y = 4 ; x = \frac { u } { v } , y = v .


A) 9.4479.447
B) 3.2963.296
C) 8.8418.841
D) 4.4474.447
E) 5.0885.088

F) B) and E)
G) B) and D)

Correct Answer

verifed

verified

 Evaluate D4x2y2dA where D is the figure bounded by y=1,y=2,x=0 and x=y\text { Evaluate } \iint _ { D } 4 x ^ { 2 } y ^ { 2 } d A \text { where } D \text { is the figure bounded by } y = 1 , y = 2 , x = 0 \text { and } x = y \text {. }

Correct Answer

verifed

verified

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y29x ^ { 2 } + y ^ { 2 } \leq 9 .


A) 81π81 \pi
B) 162π162 \pi
C) 324π324 \pi
D) 27π27 \pi
E) 40.5π40.5 \pi

F) C) and D)
G) A) and B)

Correct Answer

verifed

verified

Evaluate the integral by changing to polar coordinates. Dex2y2dA\iint _ { D } e ^ { - x ^ { 2 } - y ^ { 2 } } d A DD is the region bounded by the semicircle x=9y2x = \sqrt { 9 - y ^ { 2 } } and the yy -axis.

Correct Answer

verifed

verified

Calculate the double integral. R(6x2y310x4) dA,R={(x,y) 0x1,0y4}\iint _ { R } \left( 6 x ^ { 2 } y ^ { 3 } - 10 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}


A) 190
B) 170
C) 130
D) 150
E) 120

F) A) and B)
G) A) and C)

Correct Answer

verifed

verified

Calculate the iterated integral.Round your answer to two decimal places. 06034x+4ydxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \sqrt { 4 x + 4 y } d x d y


A) 94.2694.26
B) 134.26134.26
C) 114.26114.26
D) 84.2684.26
E) 74.2674.26

F) A) and E)
G) A) and D)

Correct Answer

verifed

verified

Find the Jacobian of the transformation. x=5αsinβ,y=4αcosβx = 5 \alpha \sin \beta , y = 4 \alpha \cos \beta


A) (x,y) (α,β) =9α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 9 \alpha
B) (x,y) (α,β) =36α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 36 \alpha
C) (x,y) (α,β) =20α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 20 \alpha
D) (x,y) (α,β) =20αsinβcosβ\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 20 \alpha \sin \beta \cos \beta
E) (x,y) (α,β) =α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - \alpha

F) A) and B)
G) A) and E)

Correct Answer

verifed

verified

Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V , where TT is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=4z = 4 and z=8z = 8 .


A) 83π\frac { 8 } { 3 } \pi
B) 4π4 \pi
C) 32π32 \pi
D) 48π48 \pi

E) A) and D)
F) B) and D)

Correct Answer

verifed

verified

Find the area of the surface. The part of the surface z=25x2y2z = 25 - x ^ { 2 } - y ^ { 2 } that lies above the xyx y -plane.


A) (626626) ( \sqrt { 626 } - 626 )
B) 275(626626+1) \frac { 2 } { 75 } ( 626 \sqrt { 626 } + 1 )
C) 275π(6266261) \frac { 2 } { 75 } \pi ( 626 \sqrt { 626 } - 1 )
D) 275(626+1) \frac { 2 } { 75 } ( \sqrt { 626 } + 1 )
E) π(6266261) \pi ( 626 \sqrt { 626 } - 1 )

F) A) and D)
G) All of the above

Correct Answer

verifed

verified

Evaluate the double integral by first identifying it as the volume of a solid. R(152x) dA,R={(x,y) 3x7,3y5}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 3 \leq x \leq 7,3 \leq y \leq 5 \}


A) 40
B) 160- 160
C) 60- 60
D) 140
E) 240

F) B) and D)
G) All of the above

Correct Answer

verifed

verified

Sketch the solid bounded by the graphs of the equations z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z=50x2y2z = 50 - x ^ { 2 } - y ^ { 2 } , and then use a triple integral to find the volume of the solid.

Correct Answer

verifed

verified

Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length a=25a = 25 if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse. Assume the vertex opposite the hypotenuse is located at (0,0) ( 0,0 ) , and that the sides are along the positive axes.


A) (10,10) ( 10,10 )
B) (10,25) ( 10,25 )
C) (25,25) ( 25,25 )
D) (5,10) ( 5,10 )
E) None of these

F) B) and D)
G) A) and B)

Correct Answer

verifed

verified

Use the Midpoint Rule with four squares of equal size to estimate the double integral. Rcos(x4+y4) dA,R={(x,y) 0x0.5,0y0.5}\iint _ { R } \cos \left( x ^ { 4 } + y ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 0.5,0 \leq y \leq 0.5 \}


A) 0.5750.575
B) 0.66220.6622
C) 0.24990.2499
D) 0.47210.4721
E) 0.76220.7622

F) A) and C)
G) C) and E)

Correct Answer

verifed

verified

Calculate the iterated integral. 1403(3+4xy)dxdy\int _ { 1 } ^ { 4 } \int _ { 0 } ^ { 3 } ( 3 + 4 x y ) d x d y

Correct Answer

verifed

verified

Calculate the iterated integral. 010y5cos(y2)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } 5 \cos \left( y ^ { 2 } \right) d x d y

Correct Answer

verifed

verified

Use spherical coordinate to find the volume above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and inside sphere x2+y2+z2=2azx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 a z .

Correct Answer

verifed

verified

Showing 21 - 40 of 60

Related Exams

Show Answer